Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae.

Identifieur interne : 000E12 ( Main/Exploration ); précédent : 000E11; suivant : 000E13

GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae.

Auteurs : Tomoaki Tanaka [Japon] ; Shingo Izawa ; Yoshiharu Inoue

Source :

RBID : pubmed:16251189

Descripteurs français

English descriptors

Abstract

We have previously reported that Saccharomyces cerevisiae has three glutathione peroxidase homologues (GPX1, GPX2, and GPX3) (Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, S., and Kimura, A. (1999) J. Biol. Chem. 274, 27002-27009). Of these, the GPX2 gene product (Gpx2) shows the greatest similarity to phospholipid hydroperoxide glutathione peroxidase. Here we show that GPX2 encodes an atypical 2-Cys peroxiredoxin which uses thioredoxin as an electron donor. Gpx2 was essentially in a reduced form even in mutants defective in glutathione reductase or glutaredoxin under oxidative stressed conditions. On the other hand, Gpx2 was partially oxidized in a mutant defective in cytosolic thioredoxin (trx1Deltatrx2Delta) under non-stressed conditions and completely oxidized in tert-butyl hydroperoxide-treated cells of trx1Deltatrx2Delta and thioredoxin reductase-deficient mutant cells. Alanine scanning of cysteine residues of Gpx2 revealed that an intramolecular disulfide bond was formed between Cys37 and Cys83 in vivo. Gpx2 was purified to determine whether it functions as a peroxidase that uses thioredoxin as an electron donor in vitro. Gpx2 reduced H2O2 and tert-butyl hydroperoxide in the presence of thioredoxin, thioredoxin reductase, and NADPH (for H2O2, Km= 20 microm, kcat = 9.57 x 10(2) s(-1); for tert-butyl hydroperoxide, Km= 62.5 microm, kcat = 3.68 x 10(2) s(-1)); however, it showed remarkably less activity toward these peroxides in the presence of glutathione, glutathione reductase, and NADPH. The sensitivity of yeast cells to tert-butyl hydroperoxide was found to be exacerbated by the co-existence of Ca2+, a tendency that was most obvious in gpx2Delta cells. Although the redox state of Gpx2 was not affected by Ca2+, the Gpx2 level was markedly increased in the presence of both tert-butyl hydroperoxide and Ca2+. Gpx2 is likely to play an important role in the protection of cells from oxidative stress in the presence of Ca2+.

DOI: 10.1074/jbc.M508622200
PubMed: 16251189


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Tanaka, Tomoaki" sort="Tanaka, Tomoaki" uniqKey="Tanaka T" first="Tomoaki" last="Tanaka">Tomoaki Tanaka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Izawa, Shingo" sort="Izawa, Shingo" uniqKey="Izawa S" first="Shingo" last="Izawa">Shingo Izawa</name>
</author>
<author>
<name sortKey="Inoue, Yoshiharu" sort="Inoue, Yoshiharu" uniqKey="Inoue Y" first="Yoshiharu" last="Inoue">Yoshiharu Inoue</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16251189</idno>
<idno type="pmid">16251189</idno>
<idno type="doi">10.1074/jbc.M508622200</idno>
<idno type="wicri:Area/Main/Corpus">000D80</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D80</idno>
<idno type="wicri:Area/Main/Curation">000D80</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D80</idno>
<idno type="wicri:Area/Main/Exploration">000D80</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Tanaka, Tomoaki" sort="Tanaka, Tomoaki" uniqKey="Tanaka T" first="Tomoaki" last="Tanaka">Tomoaki Tanaka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Izawa, Shingo" sort="Izawa, Shingo" uniqKey="Izawa S" first="Shingo" last="Izawa">Shingo Izawa</name>
</author>
<author>
<name sortKey="Inoue, Yoshiharu" sort="Inoue, Yoshiharu" uniqKey="Inoue Y" first="Yoshiharu" last="Inoue">Yoshiharu Inoue</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Blotting, Western (MeSH)</term>
<term>DNA Primers (MeSH)</term>
<term>Disulfides (metabolism)</term>
<term>Glutathione Peroxidase (genetics)</term>
<term>Glutathione Peroxidase (isolation & purification)</term>
<term>Glutathione Peroxidase (metabolism)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Peroxidases (metabolism)</term>
<term>Peroxiredoxins (MeSH)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (isolation & purification)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (isolation & purification)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amorces ADN (MeSH)</term>
<term>Disulfures (métabolisme)</term>
<term>Glutathione peroxidase (génétique)</term>
<term>Glutathione peroxidase (isolement et purification)</term>
<term>Glutathione peroxidase (métabolisme)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Peroxidases (métabolisme)</term>
<term>Peroxirédoxines (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (isolement et purification)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (isolement et purification)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Technique de Western (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutathione Peroxidase</term>
<term>Recombinant Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Glutathione Peroxidase</term>
<term>Recombinant Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Disulfides</term>
<term>Glutathione Peroxidase</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA Primers</term>
<term>Peroxiredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutathione peroxidase</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines recombinantes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Glutathione peroxidase</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Disulfures</term>
<term>Glutathione peroxidase</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Blotting, Western</term>
<term>Mutagenesis, Site-Directed</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amorces ADN</term>
<term>Mutagenèse dirigée</term>
<term>Peroxirédoxines</term>
<term>Stress oxydatif</term>
<term>Séquence nucléotidique</term>
<term>Technique de Western</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have previously reported that Saccharomyces cerevisiae has three glutathione peroxidase homologues (GPX1, GPX2, and GPX3) (Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, S., and Kimura, A. (1999) J. Biol. Chem. 274, 27002-27009). Of these, the GPX2 gene product (Gpx2) shows the greatest similarity to phospholipid hydroperoxide glutathione peroxidase. Here we show that GPX2 encodes an atypical 2-Cys peroxiredoxin which uses thioredoxin as an electron donor. Gpx2 was essentially in a reduced form even in mutants defective in glutathione reductase or glutaredoxin under oxidative stressed conditions. On the other hand, Gpx2 was partially oxidized in a mutant defective in cytosolic thioredoxin (trx1Deltatrx2Delta) under non-stressed conditions and completely oxidized in tert-butyl hydroperoxide-treated cells of trx1Deltatrx2Delta and thioredoxin reductase-deficient mutant cells. Alanine scanning of cysteine residues of Gpx2 revealed that an intramolecular disulfide bond was formed between Cys37 and Cys83 in vivo. Gpx2 was purified to determine whether it functions as a peroxidase that uses thioredoxin as an electron donor in vitro. Gpx2 reduced H2O2 and tert-butyl hydroperoxide in the presence of thioredoxin, thioredoxin reductase, and NADPH (for H2O2, Km= 20 microm, kcat = 9.57 x 10(2) s(-1); for tert-butyl hydroperoxide, Km= 62.5 microm, kcat = 3.68 x 10(2) s(-1)); however, it showed remarkably less activity toward these peroxides in the presence of glutathione, glutathione reductase, and NADPH. The sensitivity of yeast cells to tert-butyl hydroperoxide was found to be exacerbated by the co-existence of Ca2+, a tendency that was most obvious in gpx2Delta cells. Although the redox state of Gpx2 was not affected by Ca2+, the Gpx2 level was markedly increased in the presence of both tert-butyl hydroperoxide and Ca2+. Gpx2 is likely to play an important role in the protection of cells from oxidative stress in the presence of Ca2+.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16251189</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>04</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2007</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>280</Volume>
<Issue>51</Issue>
<PubDate>
<Year>2005</Year>
<Month>Dec</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>42078-87</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We have previously reported that Saccharomyces cerevisiae has three glutathione peroxidase homologues (GPX1, GPX2, and GPX3) (Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, S., and Kimura, A. (1999) J. Biol. Chem. 274, 27002-27009). Of these, the GPX2 gene product (Gpx2) shows the greatest similarity to phospholipid hydroperoxide glutathione peroxidase. Here we show that GPX2 encodes an atypical 2-Cys peroxiredoxin which uses thioredoxin as an electron donor. Gpx2 was essentially in a reduced form even in mutants defective in glutathione reductase or glutaredoxin under oxidative stressed conditions. On the other hand, Gpx2 was partially oxidized in a mutant defective in cytosolic thioredoxin (trx1Deltatrx2Delta) under non-stressed conditions and completely oxidized in tert-butyl hydroperoxide-treated cells of trx1Deltatrx2Delta and thioredoxin reductase-deficient mutant cells. Alanine scanning of cysteine residues of Gpx2 revealed that an intramolecular disulfide bond was formed between Cys37 and Cys83 in vivo. Gpx2 was purified to determine whether it functions as a peroxidase that uses thioredoxin as an electron donor in vitro. Gpx2 reduced H2O2 and tert-butyl hydroperoxide in the presence of thioredoxin, thioredoxin reductase, and NADPH (for H2O2, Km= 20 microm, kcat = 9.57 x 10(2) s(-1); for tert-butyl hydroperoxide, Km= 62.5 microm, kcat = 3.68 x 10(2) s(-1)); however, it showed remarkably less activity toward these peroxides in the presence of glutathione, glutathione reductase, and NADPH. The sensitivity of yeast cells to tert-butyl hydroperoxide was found to be exacerbated by the co-existence of Ca2+, a tendency that was most obvious in gpx2Delta cells. Although the redox state of Gpx2 was not affected by Ca2+, the Gpx2 level was markedly increased in the presence of both tert-butyl hydroperoxide and Ca2+. Gpx2 is likely to play an important role in the protection of cells from oxidative stress in the presence of Ca2+.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tanaka</LastName>
<ForeName>Tomoaki</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Izawa</LastName>
<ForeName>Shingo</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Inoue</LastName>
<ForeName>Yoshiharu</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>10</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C492173">GPX2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="D054464">Peroxiredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="D005979">Glutathione Peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005979" MajorTopicYN="N">Glutathione Peroxidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054464" MajorTopicYN="N">Peroxiredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16251189</ArticleId>
<ArticleId IdType="pii">M508622200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M508622200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Inoue, Yoshiharu" sort="Inoue, Yoshiharu" uniqKey="Inoue Y" first="Yoshiharu" last="Inoue">Yoshiharu Inoue</name>
<name sortKey="Izawa, Shingo" sort="Izawa, Shingo" uniqKey="Izawa S" first="Shingo" last="Izawa">Shingo Izawa</name>
</noCountry>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Tanaka, Tomoaki" sort="Tanaka, Tomoaki" uniqKey="Tanaka T" first="Tomoaki" last="Tanaka">Tomoaki Tanaka</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E12 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E12 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16251189
   |texte=   GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16251189" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020